Helicon plasma with additional immersed antenna
نویسندگان
چکیده
A ‘primary’ RF power (H-power) at 13.56 MHz is coupled to a plasma source excited by an external double saddle field Helicon antenna. A ‘secondary’ RF power (S-power), also at 13.56 MHz but with variable phase, is additionally coupled by inserting a second antenna in contact with the plasma through one end of the source. The immersed antenna can be grounded or floating, allowing a self-bias to form in the latter case. Changes in the plasma density and electron temperature are measured in both cases with varying power on the immersed antenna. The plasma potential increases dramatically with S-power in the grounded case, and is found to be similar in size to the sum of the plasma potential and the self-bias formed in the floating case for all powers. Hence, the sheath between the immersed antenna and the plasma is shown to be equal in both the grounded and floating cases. Although the power efficiency does not vary significantly as a function of the S-power, it is consistently lower for the grounded case possibly as a result of a dc current to ground. The plasma parameters are drastically changed as the phase between the two antennae are varied (floating case), and a sinusoidal function was fitted to the plasma parameters as a function of the phase shift. The calculated power loss to the antenna indicates that the power efficiency of the immersed antenna, as the phase is changed, is altered from 80% to 10%.
منابع مشابه
Sputtering effects in a helicon plasma with an additional immersed antenna
A plasma source excited by a double saddle helicon antenna outside the glass vacuum vessel has been modified by inserting a second copper antenna in contact with the plasma through the glass end plate. Both have the same frequency of 13.56 MHz but have a different phase. The immersed antenna is electrically floating, allowing a negative self-bias to form, leading to ion bombardment and sputteri...
متن کاملHelicon plasma source for ionized physical vapor deposition
A helicon antenna that sits remotely outside the vacuum system is attached to a magnetron sputtering system. This increases the electron temperature, which increases the ionization of the sputter flux for achieving ionized physical vapor deposition (IPVD). There are no shadowing and contamination problems, unlike other IPVD devices with immersed coils, since the helicon antenna is outside the v...
متن کاملSuperiority of half - wavelength helicon antennae
Plasma densities produced by halfand full-wavelength (HW and FW) helical antennae in helicon discharges are compared. It is found that HW antennae are more efficient than FW ones in producing plasma downstream from the antenna. The measured wave amplitudes and the apparent importance of downstream ionization do not agree with computations.
متن کاملThe role of Trivelpiece–Gould waves in antenna coupling to helicon waves
It is well known that the simple theory of helicon waves, in which the electron mass me is neglected, is valid only if Ez also vanishes, a condition which is not satisfied in experiment. Exact solutions of cold plasma theory with finite me and Ez predict the existence of additional highly damped Trivelpiece–Gould ~TG! modes ~H-TG theory!, which can greatly modify the nature of helicon discharge...
متن کاملParallel solution of surface-volume integral equations for the design of Helicon plasma thrusters
Radiofrequency (RF) magnetized Helicon plasma sources have been proposed as propulsive devices for space thrusters. In order to optimize the antenna-plasma coupling in a Helicon source the ADAMANT code, which implements the numerical solution of surface-volume integral equations, has been developed; the approach lends itself to parallel execution. Results concerning the speed-up obtained throug...
متن کامل